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1. Introduction

Reducing Serverless Startup Latency through Hierarchical 
Zygote Trees



Introduction
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Approaches towards reducing the startup latency:
1. Lightweight sandboxes: containers, VM, unikernels

Go one step further: 
organize zygotes in hierarchical tree structure 
(known as Hierarchical Zygotes)

1. https://www.usenix.org/system/files/conference/atc18/atc18-oakes.pdf

fork

fork

2. Initializing processes inside the sandboxes: 
sock zygote initialization[1]
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2. GitHub PyPI[2] Dependency 
Study

> Background
> Requirement Counts
> Popularity Distribution

3. Pronounced "pie pee eye".



Background

A requirements.txt example:
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3. https://console.cloud.google.com/marketplace/product/github/github-repos

 numpy
 pandas

We extracted 9,678 unique requirements.txt files 
from the BigQuery public dataset[3] and analyzed.

pip install -r requirements.txt installs numpy, pandas 
and their dependencies recursively.



Requirement Counts

> Direct dependencies: packages that are 
explicitly listed in requirements.txt.

> Indirect dependencies: packages that are 
not directly required by the project but 
required by direct dependencies.

we try to pip-compile each requirements.txt 
to get complete.txt, which contains:

a) indirect dependencies

b) precise package versions 
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Background: pip-compile

 numpy

 pandas

numpy==2.1.3

# via

#   -r requirements.txt

#   pandas

pandas==2.2.3

# via -r requirements.txt

python-dateutil==2.9.0.post0

# via pandas

pytz==2024.2

# via pandas

six==1.16.0

# via python-dateutil

tzdata==2024.2

# via pandas

“pip-compile requirements.txt -o complete.txt”

requirements.txt example: complete.txt example:
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 indirect dependencies

requirements.txt contains only direct dependencies, 
complete.txt contains direct+indirect dependencies 

pandas depend on six
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precise package versions 



Requirement Counts

> Direct dependencies: packages that are 
explicitly listed in requirements.txt.
> Indirect dependencies: packages that are 
not directly required by the project but 
required by direct dependencies.

we try to pip-compile each requirements.txt 
to get complete.txt, which contains:

a) indirect dependencies
b) precise package versions 

Implication: Most package requirements are 
indirect, package initialization may be costlier 
than expected
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Note: 1) requirements.txt contains only direct dependencies, 
     complete.txt contains direct+indirect dependencies

2) filtered requirements.txt: the files on which pip-compile ran successfully 



Popularity Distribution

Implications: package usage is highly skewed, 
relatively few zygotes could provide substantial benefit on cold startup.
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We count how many requirements.txt/complete.txt 
files specify at least one of Top N 
(with or without version) packages.



3. Forklift Zygote Trees

> Forklift: Zygote Trees Construction Algorithm
Basic idea
Example
Optimizations

> Deploy the Zygote Tree in OpenLambda



Forklift: Basic Idea

Before a package can be imported in a node, all of its 
dependencies should be imported in the node’s ancestors.

Construct a tree based on historical call data.
Commonly used packages added to the tree first.
Adding nodes gradually until #nodes reaches the limit.

Restriction
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Define the Forklift Algorithm: Input/Output

size limit: <=6
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Define the Forklift Algorithm: Input/Output

size limit: <=6



Define the Forklift Algorithm: Input/Output

Each node only import one package for simplicity. 

size limit: <=6



Forklift Example: bootstrap the construction

A priority Queue

3 3 1



Forklift Example: bootstrap the construction

A priority Queue



step 1: add a child by popping the CandidateQ

A priority Queue
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A priority Queue



step 1: add a child by popping the CandidateQ

A priority Queue



step 2: Enqueue for next branching

A priority Queue



Do step 1(add_child_node)+2(enqeue_top_child_candidate) 

repeatedly …

A priority Queue



Eventually, the tree is …



Optimizations

1. Replace 0/1 in the binary call matrix with weight values, e.g. 
import latency.

2. Python packages often have many dependencies 
(e.g., pandas 2.2.3 requires 5 packages, Jupyter 1.0.0 requires 98 packages).
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Time-based Weight

Multi-package (per node)
why not import a package together with its dependencies 
(multiple packages) in one node?



 Multi-package Tree Example: bootstrap the construction



 Multi-package Tree Example: bootstrap the construction



step 1: add a child by popping the CandidateQ



step 2: Enqueue for next branching



Eventually, the tree is …

Packages required by each function are satisfied.



Comparison

single-package multi-package

better strategy!

Packages required by each function are satisfied.



Deployment in OpenLambda

We choose to deploy in OpenLambda as it is based on SOCK container that 
supports sandbox-level fork.

When a request arrives, do a DFS search in the tree and first non-root node is 
selected to serve the requests. 
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B1 and B2 conflicts
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Deployment in OpenLambda

We choose to deploy in OpenLambda as it is based on SOCK container that 
supports sandbox-level fork.

When a requests comes in, do a DFS search in the tree and first non-root node is 
selected to serve the requests. 

We can’t choose Node3, 
as it contains D1 (possibly malicious)

B1 and B2 conflicts



> Memory usage vs throughput, latency CDF
> Warmup time, package hit rate

4. Evaluation



Evaluation Overview
The call trace includes 1793 
unique invocations.

Train trace:Test trace=50:50
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We construct & test trees of varying 
sizes using four variants of the 
Forklift algorithm, they are:

×Uniform Weight        Single-package
Time-based Weight          Multi-package

weight policies single-package per node?

Forklift is run on the train trace, 

play the test trace on 
OpenLambda with 5 threads.



Memory Usage vs Throughput

Finding 1:
Multi-package optimization is crucial.

Finding 2:
Weighting packages by import latency 
benefits smaller trees significantly, but 
not for larger trees.
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Latency CDF

latency of different size trees under 
multi-package time-based weight strategy:
Median Speedup:

● 40-node(small) trees: 3.2× faster
● 640-node(large) trees: 4.8× faster

95th Percentile Speedup:

● 40-node trees: 2.7× faster
● 640-node trees: 5.3× faster
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Warmup Time and Hit Rate 
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Concurrently create the zygote processes with six threads during warmup.
Package hit: packages required by functions provided by zygotes are hits



Warmup Time and Hit Rate 
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All zygotes can be created in less than 7 seconds, even for large trees
The multi-package, uniform-weighted tree has the best hit rates (over 90%)



Conclusion

> Forklift, a new algorithm for constructing hierarchical zygote trees

> Achieves ~5× faster invocation latency on OpenLambda

open-source at: 
https://github.com/open-lambda/forklift
https://github.com/open-lambda/ReqBench 
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https://github.com/open-lambda/forklift
https://github.com/open-lambda/ReqBench
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Yuanzhuo Yang

Feel free to drop an email if you have questions!

I am seeking for Ph.D. or funded M.S. positions worldwide starting 2025 Fall.



appendix: Multi-package trees visualization
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appendix: Single-package trees visualization
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