
Forklift: Fitting Zygote Trees for
Faster Package Initialization
WoSC 2024 : 10th International Workshop on Serverless Computing
Dec 2rd, 2024

Yuanzhuo Yang, KJ Choi, Keting Chen, Tyler Caraza-Harter
{yyang682, kchoi, kchen, tharter}@wisc.edu
University of Wisconsin, Madison

1. Introduction

2. GitHub PyPI Dependency Study

3. Forklift Zygote Trees

4. Forklift Evaluation

WoSC ‘24, Dec 2rd, 2024

Index

1. Introduction

Reducing Serverless Startup Latency through Hierarchical
Zygote Trees

Introduction

WoSC ‘24, Dec 2rd, 2024

Approaches towards reducing the startup latency:
1. Lightweight sandboxes: containers, VM, unikernels

Go one step further:
organize zygotes in hierarchical tree structure
(known as Hierarchical Zygotes)

1. https://www.usenix.org/system/files/conference/atc18/atc18-oakes.pdf

fork

fork

2. Initializing processes inside the sandboxes:
sock zygote initialization[1]

Introduction

WoSC ‘24, Dec 2rd, 2024

Go one step further:
organize zygotes in hierarchical tree structure
(known as Hierarchical Zygotes)

1. https://www.usenix.org/system/files/conference/atc18/atc18-oakes.pdf

Approaches towards reducing the startup latency
1. Lightweight sandboxes: containers, VM, unikernels

1. https://www.usenix.org/system/files/conference/atc18/atc18-oakes.pdf

2. Initializing processes inside the sandboxes:
sock zygote initialization[1]

2. GitHub PyPI[2] Dependency
Study

> Background
> Requirement Counts
> Popularity Distribution

3. Pronounced "pie pee eye".

Background

A requirements.txt example:

WoSC ‘24, Dec 2rd, 2024

3. https://console.cloud.google.com/marketplace/product/github/github-repos

 numpy
 pandas

We extracted 9,678 unique requirements.txt files
from the BigQuery public dataset[3] and analyzed.

pip install -r requirements.txt installs numpy, pandas
and their dependencies recursively.

Requirement Counts

> Direct dependencies: packages that are
explicitly listed in requirements.txt.

> Indirect dependencies: packages that are
not directly required by the project but
required by direct dependencies.

we try to pip-compile each requirements.txt
to get complete.txt, which contains:

a) indirect dependencies

b) precise package versions

WoSC ‘24, Dec 2rd, 2024

Background: pip-compile

 numpy

 pandas

numpy==2.1.3

via

-r requirements.txt

pandas

pandas==2.2.3

via -r requirements.txt

python-dateutil==2.9.0.post0

via pandas

pytz==2024.2

via pandas

six==1.16.0

via python-dateutil

tzdata==2024.2

via pandas

“pip-compile requirements.txt -o complete.txt”

requirements.txt example: complete.txt example:

WoSC ‘24, Dec 2rd, 2024

Background: pip-compile

 numpy

 pandas

numpy==2.1.3

via

-r requirements.txt

pandas

pandas==2.2.3

via -r requirements.txt

python-dateutil==2.9.0.post0

via pandas

pytz==2024.2

via pandas

six==1.16.0

via python-dateutil

tzdata==2024.2

via pandas

“pip-compile requirements.txt -o complete.txt”

requirements.txt example: complete.txt example:

WoSC ‘24, Dec 2rd, 2024

 indirect dependencies

requirements.txt contains only direct dependencies,
complete.txt contains direct+indirect dependencies

pandas depend on six

Background: pip-compile

 numpy

 pandas

numpy==2.1.3

via

-r requirements.txt

pandas

pandas==2.2.3

via -r requirements.txt

python-dateutil==2.9.0.post0

via pandas

pytz==2024.2

via pandas

six==1.16.0

via python-dateutil

tzdata==2024.2

via pandas

“pip-compile requirements.txt -o complete.txt”

requirements.txt example: complete.txt example:

WoSC ‘24, Dec 2rd, 2024

precise package versions

Requirement Counts

> Direct dependencies: packages that are
explicitly listed in requirements.txt.
> Indirect dependencies: packages that are
not directly required by the project but
required by direct dependencies.

we try to pip-compile each requirements.txt
to get complete.txt, which contains:

a) indirect dependencies
b) precise package versions

Implication: Most package requirements are
indirect, package initialization may be costlier
than expected

WoSC ‘24, Dec 2rd, 2024

Note: 1) requirements.txt contains only direct dependencies,
 complete.txt contains direct+indirect dependencies

2) filtered requirements.txt: the files on which pip-compile ran successfully

Popularity Distribution

Implications: package usage is highly skewed,
relatively few zygotes could provide substantial benefit on cold startup.

WoSC ‘24, Dec 2rd, 2024

We count how many requirements.txt/complete.txt
files specify at least one of Top N
(with or without version) packages.

3. Forklift Zygote Trees

> Forklift: Zygote Trees Construction Algorithm
Basic idea
Example
Optimizations

> Deploy the Zygote Tree in OpenLambda

Forklift: Basic Idea

Before a package can be imported in a node, all of its
dependencies should be imported in the node’s ancestors.

Construct a tree based on historical call data.
Commonly used packages added to the tree first.
Adding nodes gradually until #nodes reaches the limit.

Restriction

WoSC ‘24, Dec 2rd, 2024

Define the Forklift Algorithm: Input/Output

size limit: <=6

Define the Forklift Algorithm: Input/Output

size limit: <=6

Define the Forklift Algorithm: Input/Output

size limit: <=6

Define the Forklift Algorithm: Input/Output

Each node only import one package for simplicity.

size limit: <=6

Forklift Example: bootstrap the construction

A priority Queue

3 3 1

Forklift Example: bootstrap the construction

A priority Queue

step 1: add a child by popping the CandidateQ

A priority Queue

step 1: add a child by popping the CandidateQ

A priority Queue

step 1: add a child by popping the CandidateQ

A priority Queue

step 2: Enqueue for next branching

A priority Queue

Do step 1(add_child_node)+2(enqeue_top_child_candidate)

repeatedly …

A priority Queue

Eventually, the tree is …

Optimizations

1. Replace 0/1 in the binary call matrix with weight values, e.g.
import latency.

2. Python packages often have many dependencies
(e.g., pandas 2.2.3 requires 5 packages, Jupyter 1.0.0 requires 98 packages).

WoSC ‘24, Dec 2rd, 2024

Time-based Weight

Multi-package (per node)
why not import a package together with its dependencies
(multiple packages) in one node?

 Multi-package Tree Example: bootstrap the construction

 Multi-package Tree Example: bootstrap the construction

step 1: add a child by popping the CandidateQ

step 2: Enqueue for next branching

Eventually, the tree is …

Packages required by each function are satisfied.

Comparison

single-package multi-package

better strategy!

Packages required by each function are satisfied.

Deployment in OpenLambda

We choose to deploy in OpenLambda as it is based on SOCK container that
supports sandbox-level fork.

When a request arrives, do a DFS search in the tree and first non-root node is
selected to serve the requests.

Deployment in OpenLambda

We choose to deploy in OpenLambda as it is based on SOCK container that
supports sandbox-level fork.

When a requests comes in, do a DFS search in the tree and first non-root node is
selected to serve the requests.

B1 and B2 conflicts

Deployment in OpenLambda

We choose to deploy in OpenLambda as it is based on SOCK container that
supports sandbox-level fork.

When a requests comes in, do a DFS search in the tree and first non-root node is
selected to serve the requests.

B1 and B2 conflicts

We choose to deploy in OpenLambda as it is based on SOCK container that
supports sandbox-level fork.

When a requests comes in, do a DFS search in the tree and first non-root node is
selected to serve the requests.

Deployment in OpenLambda

B1 and B2 conflicts

Deployment in OpenLambda

We choose to deploy in OpenLambda as it is based on SOCK container that
supports sandbox-level fork.

When a requests comes in, do a DFS search in the tree and first non-root node is
selected to serve the requests.

We can’t choose Node3,
as it contains D1 (possibly malicious)

B1 and B2 conflicts

> Memory usage vs throughput, latency CDF
> Warmup time, package hit rate

4. Evaluation

Evaluation Overview
The call trace includes 1793
unique invocations.

Train trace:Test trace=50:50

WoSC ‘24, Dec 2rd, 2024

We construct & test trees of varying
sizes using four variants of the
Forklift algorithm, they are:

×Uniform Weight Single-package
Time-based Weight Multi-package

weight policies single-package per node?

Forklift is run on the train trace,

play the test trace on
OpenLambda with 5 threads.

Memory Usage vs Throughput

Finding 1:
Multi-package optimization is crucial.

Finding 2:
Weighting packages by import latency
benefits smaller trees significantly, but
not for larger trees.

WoSC ‘24, Dec 2rd, 2024

Latency CDF

latency of different size trees under
multi-package time-based weight strategy:
Median Speedup:

● 40-node(small) trees: 3.2× faster
● 640-node(large) trees: 4.8× faster

95th Percentile Speedup:

● 40-node trees: 2.7× faster
● 640-node trees: 5.3× faster

WoSC ‘24, Dec 2rd, 2024

Warmup Time and Hit Rate

WoSC ‘24, Dec 2rd, 2024

Concurrently create the zygote processes with six threads during warmup.
Package hit: packages required by functions provided by zygotes are hits

Warmup Time and Hit Rate

WoSC ‘24, Dec 2rd, 2024

All zygotes can be created in less than 7 seconds, even for large trees
The multi-package, uniform-weighted tree has the best hit rates (over 90%)

Conclusion

> Forklift, a new algorithm for constructing hierarchical zygote trees

> Achieves ~5× faster invocation latency on OpenLambda

open-source at:
https://github.com/open-lambda/forklift
https://github.com/open-lambda/ReqBench

WoSC ‘24, Dec 2rd, 2024

https://github.com/open-lambda/forklift
https://github.com/open-lambda/ReqBench

Contact

yyang682@wisc.edu
yuanzhuoyang@gmail.com

Yuanzhuo Yang

Feel free to drop an email if you have questions!

I am seeking for Ph.D. or funded M.S. positions worldwide starting 2025 Fall.

appendix: Multi-package trees visualization

WoSC ‘24, Dec 2rd, 2024

appendix: Single-package trees visualization

WoSC ‘24, Dec 2rd, 2024

