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Figure 1: Serverless architecture for pipeline execution, showing AWS S3, Lambda functions, and
key configuration variables (e.g., memory, vCPUs, splits).
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WHAT ARE WE SOLVING?

Develop a predictive model to optimize:
* Execution time

Operational costs
Reduce reliance on exhaustive DSA

Validate using a geospatial pipeline executed on Lithops.




DATAPLUG Focuses on partition size but ignores other parameters.

SIZELESS Predicts memory but offers limited cost and time improvements.

OUR MODEL Simultaneous optimization of multiple parameters.

Achieves a 30% cost reduction compared to DSA.

STATE OF THE ART



WATER CONSUMPTION PIPELINE:
USE CASE VALIDATION

DATA PREPARATION RASTER DATA

Uploading and converting

INTERPOLATION

Parallel interpolation of climate

DIgItGI Terrain Models (DTMS). variables at scale.
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Figure 2: Water consumption pipeline stages.
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OPTIMIZATION PROCESS

DATASET PREPROCESSING MODEL

148 configurations from DSA Feature engineering. Algorithm: XGBoost.

experiments. i X ) .
Logarithmic transformation of Hyperparameter tuning: Optuna.

Key parameters: splits, memory, execution time.

ephemeral storage, vCPUs, input .

size Data augmentation.

Data Collection Preprocessing VValidation

Figure 3: Process flow for data collection, preprocessing, training, prediction, and validation in the
optimization pipeline.
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FEATURE ENGINEERING

ORIGINAL PARAMETERS

Parameter Description
num_files Number of input files processed
splits Number of splits (chunks) used for parallel processing

input_size_gb

runtime_memory_mb
ephemeral_storage_mb

WO rker_pro CESSES

invoke_pool_threads

vcpus

Total size of the input data in gigabytes

Amount of memory allocated for the runtime (MB)
Temporary storage allocated for intermediate data (MB)
Number of worker processes running in parallel

Number of threads per invocation

Number of virtual CPUs allocated

Table 1: Input Parameters Collected During DSA.
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DERIVED

PARAMETERS

Derived Parameter

Description

memory_per_file
storage_per_file
vcpus_per_file
files_per_vcpu
size_per_file
memory_per_gb
vcpus_per_gb
storage_per_gb
threads_per_worker
memory_per_thread
vcpus_per_thread

Memory allocated per file processed (MB)
Temporary storage per file (MB)

vCPUs allocated per file

Number of files processed per vCPU

Size of each file (GB)

Memory allocated per GB of input size
vCPUs allocated per GB of input size
Temporary storage per GB of input size (MB)
Threads running per worker process
Memory allocated per thread (MB)
vCPUs allocated per thread

memory_per_thread_vcpus_ratioRatio of memory to vCPUs per thread

Table 2: Derived Parameters from Feature Engineering.




KEY RESULTS

MAE REDUCTION COST REDUCED BY INVESTMENT
30% COMPARED TO RECOVERY IN JUST 2
DSA MONTHS
75.34% vs. Baseline (Average). Assuming a rate of 10

. . executions per day.
69% vs. Linear Regression.
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Figure 4: Break-even point graph showing the recovery of investment within 2 months.
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MODEL VALIDATION

Unseen Configurations

* Predicted optimal duration: ~ 195s (real: 184s). , ,
Model IMAE (sfAva. MAE (CV) (s]MAPE (%] R

. . INGBoost 29.81 34.20 8.72% .BE0Z
Residual AnGIySIS Baseline {Average) 120.90 - - -

. . . . . Linear Regression 97.02 96.62 28.73% P.3380

* Symmetrical residuals indicate low bias. PCA + Linear Regression| 97.70 92.03 20.04% P.3240

. Table 3: Comparison of Models.
Learning Curve

* Demonstrates strong generalization with limited data.



COMPARISON: REAL VS. PREDICTED

XGBoost predictions align closely with actual values.

Superior to simpler methods like Linear Regression or PCA-

based models.

Predicted Duration

Actual vs Predicted Duration: XGBoost vs Linear Regression vs PCA + Linear Regression
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Figure 5: Comparison of actual vs. predicted duration for various models, highlighting the
performance of XGBoost against simpler regression methods.




KEY TAKEAWAYS

PREDICTIVE MODEL EFFECTIVELY
OPTIMIZES SERVERLESS PIPELINES

ACHIEVED:

Up to 79.9% reduction in execution time.

~30% cost savings.

APPLICABLE ACROSS SERVERLESS
PLATFORMS (AWS LAMBDA, AZURE,
GOOGLE CLOUD)



IMPROVE ACCURACY
WITH LARGER
DATASETS.

NEXT STEPS

EXPLORE ADVANCED
ARCHITECTURES
(E.G., NEURAL
NETWORKS).

VALIDATE ON
DIVERSE PIPELINES
AND SERVERLESS

PLATFORMS.
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