

WoSC 10 10th International Workshop on Serverless Computing

Advancing Serverless Computing for Scalable Al Model Inference: Challenges and Opportunities

Li Wang

Yankai Jiang

Ningfang Mi

Northeastern University 2024.12.02

Outline

- Motivations
- Contributions
- Challenges
- Optimal Strategies
- Emerging Research Fields
- Insights
- Conclusions

Al is everywhere

3

Al model sizes and complexity are increasing.

Numbers of parameters in pre-trained LLMs (having a size larger than 10B) in recent years.

Cloud computing paradigm is changing from laaS to FaaS.

Cloud computing service models.

Source: Peter Mell, Timothy Grance, The NIST Definition of Cloud Computing, National Institute of Standards and Technology (NIST)

Emerging serverless paradigm with elastic resource scaling and pay-per-use billing model.

A workflow of function invocation with serverless paradigm. Source: Wang et al., Uncovering The Impact of Bursty Workloads on System Performance in Serverless Computing, ISNCC, 2024

Both academic and industry are making efforts to understand and optimize the deployment of AI model inference systems with serverless paradigm.

Both academic and industry are making efforts to understand and optimize the deployment of AI model inference systems with serverless paradigm.

The selected 31 works show an increasing trend across year (2019.01 ~ 2024.09).

From the 31 selected works, we classify them into ML-, DL-, LLMs-based inference. Subsequently, we further divide these works into 10 subcategories for detailed analysis.

From the 31 selected works, we classify them into ML-, DL-, LLMs-based inference. Subsequently, we further divide these works into 10 subcategories for detailed analysis.

AI Models	ML-based	DL-based	LLMs-based
Resource management	[1, 3, 6, 7, 10, 12, 13, 15, 19, 22, 23, 25, 28, 31]	[5, 8, 11, 16, 20, 24, 27, 30]	[2, 9, 14, 17, 21, 26]
Cost-effectiveness	[1, 6, 7, 10, 12, 13, 15, 19, 22, 23, 25, 28, 31]	[5, 8, 11, 20, 24, 27, 30]	[2, 9, 14, 21, 26]
Distributed inference	[15, 19, 22, 25, 27, 28, 31]	[5, 10, 11, 16, 27]	[9, 14, 17, 26]
Cold start latency	[1, 7, 12, 13, 25, 28]	[7, 8, 16, 20, 23, 30]	[9, 26]
GPU utilization	[1, 6, 7, 12, 13, 19, 31]	[11, 16, 20]	[9, 14]
Bursty workloads	[1, 6, 12, 13, 25, 31]	[5, 16, 24]	[9, 26]
Scheduling	[1, 6, 12, 13, 28, 31]	[5, 20, 24]	[9, 26]
Batching	[1, 6, 12, 28, 31]	[5]	[26]
Auto-scaling	[22, 31]	[5, 20]	[14]
Model partitioning	[10]	[8, 30]	N/A

Statistics of 10 trending topics in ML-, DL-, LLMs-based inference.

Background

Deploy AI model inference systems with serverless paradigm on the cloud.

A workflow of serverless inference process.

Challenges

Challenges in scalable AI model inference deployment with serverless paradigm.

Challenges

Dynamic workloads with spikes (bursty workloads).

An example dynamic workload.

System CPU utilization.

Source: Wang et al., Uncovering The Impact of Bursty Workloads on System Performance in Serverless Computing, ISNCC, 2024

Cold-start latency.

Function execution

A cold starts, before a pre-warm, and after a keep alive.

Challenges

Resource over/under-provisioning (CPU, GPU, memory, I/O and network bandwidth, etc.).

Challenges

Stateful workflows in distributed AI model inference systems.

A multi-stage deep learning model serving process.

Optimal strategies to address the forementioned challenges in scalable AI model inference deployment with serverless paradigm.

Batching and scheduling are commonly used in the context of bursty workloads.

BARISTA	Online resource configurations	Dynamic resource allocation
AYCI	Offer various DL inference configurations	Automate performance evaluation
MArK	Dynamic batching & auto-scaling framework	Recommend small laaS instances with GPUs
BATCH	Adaptive batching framework	Dynamically calculate the optimal batch size
INFless	Heterogenous hardware configurations & workload prediction	Reduce cold-start & resource wastage
JointBatching	Batching & multi-processing with detection and optimization	Reduce latency under bursty workloads

Model partitioning is used to address the resource demands of large AI models.

•	MOPAR	Vertically partition the model into slices of analogous layers Data compression & shared memory	Optimize resource usage and reduce latency
•	Gillis	Partition the model across multi-serverless functions	Ensure optimal latency and SLOs
•	MLModelComposition	Decompose ML models into slices to execute the large inference tasks as multiple serverless functions	Optimal usage of both storage and memory

Resources sharing (GPUs, memory, networks, and containers).

	FaST-GShare	Limits and isolates spatio-temporal resources for GPU multiplexing Allocates executions across GPU nodes	Ensure maximum GPU utilization with SLOs requirements
•	SMSS	Log-based workflow runtime Two-layer GPU sharing mechanism	Reduce cold-start using inter-/intra-model GPU sharing
•	Tetris	Dynamic memory-efficient tensor sharing	Performance-cost tradeoff & scalability
•	GPUColdStarts	Remote memory pooling & hierarchical sourcing through GPU nodes before spawning instances on other nodes	Minimize redundant DL model transformations through download sharing
•	Fifer	Bin packing, function-aware container scaling, and batching Proactively spawn containers with SLOs requirements	Minimize cold-start latency
•	Optimus	Inter-function model transformation within container operations	Ensure rapid transitions between models within a container

Optimal resource management systems are designed to recommend optimal configurations.

	INFaaS	Generates model variants and creates performance cost profiles across different hardware platforms.	Enable dynamic and efficient selection of optimal variant to meet specific application requirements
•	AMPS-Inf	Formulates and solves a Mixed-Integer Quadratic Programming (MIQP) problem to partition models and provisions resources	Minimize costs with SLOs requirements for large-scale distributed ML inferences

Miscellaneous areas.

•	FSD-Inference	Enable inter-process communication (IPC)	High parallelism with serverless paradigm for ML inference tasks
•	AsyFunc	Separates resource-intensive tasks from higher ones using asymmetric functions and function fusion	Reduce cold-start latency
•	MLFaaS	Generalize ML inference pipelines with AI-based framework Recommend optimal function compositions the pipeline	Minimize the response time of ML inference

Serverless LLMs inference.

Serverless LLMs inference.

•	AWS Bedrock	Offers a suite of LLM foundation models	Simplify the complexity of LLM inference and cloud management
•	Microsoft Azure AI Studio	Pay-as-you-go, token-based billing model Enable users deploy LLM models as serverless APIs	Simplify the complexity of LLM inference and cloud management & save billing costs
•	LoRAX	A large-scale fine-tuned LLM inference framework using shared GPU resources, continuous batching	A high throughput and low latency system
•	ServerlessLLM	Checkpointing & multi-tiered model loading	Reduce cold-start latency & speed up model loading
	ENOVA	Distributed LLMs inference on multi-GPU nodes	Recommend optimal hardware configurations

Al-based scaling.

	ServingDI	Hybrid scheduler with deep reinforcement learning techniques	Enable optimal container allocation
•	Fifer	Function-aware container scaling & LSTM-based request batching	Reduce cold-start latency
•	Gillis	Encodes partitioning policies into a neural network	Iteratively optimize inference cost and latency

Security and privacy in edge computing.

•	TrustedLLMInference	Adopts blockchain technology to secure distributed AI inference	Guarantee trust, verifiability, and security for privacy- sensitive tasks in distributed inference.
٠	MLEdge	Efficiently deploy ML models with sensitive data being processed locally	Reduce inference latency while preserving privacy

Serverless LLMs inference.

Serverless LLMs inference.

- Limitations of existing serverless AI inference frameworks
 - Cold-start latency
 - Resource constraints (memory, storage)
 - Lack of fine-grained control over resources (GPU, memory)
 - Vendor lock-in & high billing costs
- Opportunities
 - Cold-start mitigation
 - Preemptive prediction, scaling, and scheduling for dynamic bursty workloads
 - Distributed multi-GPU management

Infrastructure advancement.

- Limitations of existing serverless AI inference infrastructures
 - Limitations to perform large-scale inference due to the stateless nature
 - Delays in real-time inference tasks because of continuous access requirements for GPUs
- Opportunities
 - Integration of GPU hardware and AI inference chips
 - Fine-grained control over hardware resources on the cloud

Energy efficiency.

- Limitations of existing serverless AI inference serving systems
 - Huge energy consumption for large and complex AI model inference (GPU)
 - Energy wastage due to lack of fine-grained control over GPUs
 - Redundant energy wastes because of horizontally scaling in serverless paradigm
- Opportunities
 - Cooling systems for real-time AI inference datacenters
 - Energy-aware scheduling for AI inference models
 - Al model quantization and pruning mechanisms

Al model inference pipelines.

- Limitations of existing serverless AI inference pipelines
 - Modular, stateless, and event-driven nature of serverless paradigm
- Opportunities
 - Efficient scaling mechanisms
 - Advanced model partitioning strategies
 - Al-based pipeline optimization

Al-based optimization strategies.

- Limitations of AI-based optimization
 - Resource unpredictability
 - Real-time inference adaptability
- Opportunities
 - Offload AI inference tasks from centralized cloud servers to edge devices
 - Local data processing on edge devices
 - Privacy-sensitive tasks with Federated Learning

Conclusions

- Identify 31 top-tier works among existing literature
- Mark the first comprehensive survey on scalable AI inference with serverless computing
- Analyze challenges & optimal strategies
- Offer valuable insights for both academia and industry

Q & A

Thank you!

